
An EÆient Numerial Method for3D Visous Ship Hydrodynamis withFree-Surfae Gravity Waves
Mervyn Lewis and Barry KorenCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands[Mervyn.Lewis,Barry.Koren℄�wi.nlSummary. A new numerial method for water ows with free-surfae gravitywaves is investigated. The method is �rst analyzed with respet to the existene ofsteady free-surfae waves, and the dispersion properties of these waves. Next, themethod is used to ompute the free water surfae generated by a standard shiphull.
1 IntrodutionMost of the urrent numerial methods for solving steady, visous free-surfae owsin ship hydrodynamis employ a time-dependent formulation and integrate until asteady state is reahed. This approah typially displays the defet of high ompu-tational osts due to persistent transient behaviour of the long gravity waves. Theattenuation of these waves behaves like O(t(1�d)=2) in Rd . To redue the omputa-tional e�ort of solving free-surfae Navier-Stokes ow, an eÆient iterative method,employing a stationary formulation of the problem, has been introdued for 2D in[1℄ and has been extended to 3D in [3℄. The method relies on a novel formulationof the free-surfae ow problem, involving the so-alled quasi free-surfae ondition(QFSC): u � r'� Fr�2u � ez = 0; (1a)where u is the veloity vetor, ' the hydrodynami pressure:' = p+ Fr�2z; (1b)Fr the Froude number and ez the unit vetor in vertial diretion, positive up-ward. Note that the boundary ondition (1a), see [1℄ for a derivation, is nonlinear.So far, this method has not yet been applied to a real 3D ship-hydrodynamisproblem. In the present paper we will do so. Moreover, a Fourier analysis willbe made of a semi-disrete generi model problem representing our disrete, 3DNavier-Stokes ow problem. In the Navier-Stokes equations onsidered, streamwisedi�usion, i.e., di�usion in x-diretion, is negleted. This simpli�ation turns out tohave far-reahing onsequenes for the well-posedness of the ontinuous and semi-disrete initial boundary-value problem.
2 Fourier analysis of semi-disrete problemAs mentioned above, the aim is to ompute the omplete stationary ow �eld, i.e.,the shape of the free surfae and the underlying visous ow �eld, generated by a



2 Mervyn Lewis and Barry Korenship. We start by analyzing the wave pattern by performing a Fourier analysis for a2D, uniform horizontal ow in in�nitely deep water. The analysis uses lassial per-turbation methods, linearization and Fourier tehniques. We assume perturbationexpansions in powers of �, �� 1, of the formq(x; t; �) = q0 + �q1(x; t) +O(�2); (2a)�(x; t; �) = �0 + ��1(x; t) +O(�2); (2b)where the solution vetor is represented by q = (u(x; t); '(x; t))T and where� = �(x; t; �) denotes the water height. The generating solution, denoted byq0 = (U ; �)T and �0, onsists of the unperturbed ow veloity U = (U; 0)T (U =onstant), the unperturbed hydrodynami pressure � = 0 and the unperturbedwater height �0 = 0. Our spatial domain 
 is de�ned as
 = fx 2 R2 : x 2 (��; �); z 2 (�;�1)g: (3)Sine we are onsidering the ow in in�nitely deep water, in z-diretion the domain
 is only bounded by the free surfae. We assume thatlimz#�1 q1(x; t) = 0: (4a)Further, we take q(��; z) = q(�; z); (4b)i.e., periodiity of the solution in x-diretion. To study the ombined e�et of thedi�erent trunation errors on the numerial approximation of the free-surfae ow,we onsider the system of modi�ed equations resulting from a semi-disretization ofthe redued Navier-Stokes equations in R2 , on a uniform Cartesian grid with meshwidth h. This system reads, negleting the O(h4) terms,ut + Uux + 'x � Re�1uzz = U h23 uxxx + h312'xxxx +Re�1 h212uzzzz ; (5a)wt + Uwx + 'z � Re�1wzz = U h23 wxxx + h312'zzzz + Re�1 h212wzzzz ; (5b)ux + wz = h33 uxxx + h312wzzzz : (5)2.1 Seond-order aurate upwind disretization of QFSCOn the free-surfae boundary z = �0, the modi�ed quasi-free surfae onditionresulting from an O(h2) upwind-biased spatial disretization is imposed, i.e.,'t + U'x � Fr�2w = U h23 'xxx +O(h3) (6)is imposed. To onstrut a Fourier representation of the solution q1(x; t), onsiderthe following isolated mode:q1(x; t) = q̂(k; s; !)eikx+sz�i!t; (7)where k; s 2 R are the wave numbers in x- and z-diretion, respetively, and where! 2 R is the radial frequeny. Substitution of (7) into (5), negleting the higherthan O(h2) terms, yields



EÆient Numerial Method for 3D Visous Free-Surfae Flows 3L̂h(k; s; !)q̂eikx+sz�i!t = 0; (8a)
L̂h(k; s; !) = 0�Ĥh(k; s; !) 0 Ĝx;h0 Ĥh(k; s; !) Ĝz;hD̂x;h D̂z;h 0

1A ; (8b)with Ĥh(k; s; !) = �i! + Uik�1 + h2k23 �� Re�1s2�1 + h2s212 � (8)the semi-disrete onvetion-di�usion operator, and with�Ĝx;hĜz;h� = �iks� ; �D̂x;hD̂z;h� =  ik �1 + h2k23 �s ! (8d)the disrete pressure gradient operator and divergene operator, respetively. Anontrivial solution of (8a) exists only ifdet(L̂h) = 0; (9)whih results in s = k�1 + h2k26 � : (10)Here we have used the fat that for z # �1 the solution perturbations are zero.So, the orresponding solution of the system of modi�ed equations is
q1(x; t) = 0� Ĝx;hĜz;h�Ĥh(k; s(k); !)

1A eikx+k�1+h2k26 �z�i!t: (11)
The dispersion relation for the modi�ed problem follows by substitution of thissolution into (6) and solving for !. The roots !1;2 an be alulated expliitly,giving !1;2 = U~k � 12p4Fr�2s� Re�2~s4 + i12Re�1~s2; (12a)~k � k�1 + h2k23 � ; ~s2 � s2�1 + h2s212 � : (12b)Note that the presene in (12a) of the positive imaginary term iRe�1~s2 gives rise toexponentially growing solutions. Hene, here steady free-surfae waves annot existfor �nite Reynolds number. It an be shown that this is not due to the disretiza-tion but due to the ontinuous formulation of the free-surfae ow problem. Thissuggests that this formulation of the free-surfae ow problem is formally ill-posed.However, the measure of ill-posedness is small for large Re.In the invisid limit a stationary wave is found. For Re " 1 and h # 0, !1;2 = 0in (12a) yields U2k�1 + h2k22 � = Fr�2: (13)This relation implies that for �xed U and Fr, k dereases with inreasing h. I.e., aoarser mesh results in a larger length of the free-surfae wave. Solving the previousexpression for k, assuming a solution of the form k = (UFr)�2(1+ �); �� 1, yields,negleting higher-order terms of �,



4 Mervyn Lewis and Barry Korenk = 1(UFr)2  1� 12h2(UFr)4! : (14)We investigate the orretness of (14) for the numerial results depited in Figure1. Here we have applied three grids with in x-diretion the mesh sizes h2 , h, and 2h.
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Fig. 1. Wave elevation in some plane y = onstant for a 3D test ase from Chapter2 of [2℄, with U = 1 and Fr = 0:6.
For U = 1, Fr = 0:6 and through the wavelength relation k = 2�� , aording to (14)it should then hold: �h2 = 2:27, �h = 2:31, �2h = 2:48, with �h=0 = 2:26. Detailedobservation of the results shown in Figure 1 shows that the above, analytiallyfound wavelengths are quite aurate, thus proving that the Fourier analysis is notonly of qualitative value but even of quantitative value.2.2 First-order aurate upwind disretization of QFSCIn this setion we analyze the e�et of an O(h)-upwind disretization of the quasifree-surfae ondition. The modi�ed equation belonging to the O(h)-upwind dis-retization is 't + U'x � Fr�2w = U h2'xx +O(h2): (15)Applying the Fourier transform to the previous expression and substitution of thesolution (11) into the Fourier-transformed quasi free-surfae ondition (15) yieldsagain a dispersion relation. The solution of this quadrati equation for !, negletingthe O(h2) term, results in the following roots

!1;2 = 2Uk + i(Re�1s2 � h2Uk2)�q4Fr�2s� (Re�1s2 + h2Uk2)22 : (16)Note that now, as real part of the solution, we have (at least) e 12 (Re�1�h2 U)k2t,where we have again negleted the O(h2) terms. Whereas for both the exat equa-tions and the O(h2) modi�ed equations, the time behaviour is always exponentially



EÆient Numerial Method for 3D Visous Free-Surfae Flows 5growing, with the O(h) upwind disretization of the QFSC, it an be exponentiallydereasing, i.e., it an lead to a steady wave. From (16), it appears that a steadywave is obtained if UReh > 2: (17)Considering the ase U = 1, ` = 1, where ` is the referene length, this meansthat for mesh Reynolds numbers Reh > 2 we may obtain steady waves due to thenumerial di�usion introdued by the O(h) upwind disretization of the pressurederivative in the QFSC. In our pratial omputations, with h�Re� 12 , this onditionis easily satis�ed.
3 Numerial resultsThe free-surfae algorithm is now applied to a standard test ase originating fromship hydrodynamis: the omputation of the omplete ow �eld generated by aSeries 60 hull at Fr = 0:316 and Re = 106.The omputational domain for this test ase ontains 353� 69� 45 grid pointsand for the initial �FS we take z = 0. Here, in the solution proess, (1a) is treatedusing Newton's method and r' is disretized employing the O(h)-upwind sheme.The solution method orresponds to the modi�ed algorithm as desribed in Chapter2 of [2℄. Two types of solutions are omputed: (i) solutions belonging to a lineariza-tion of the free-surfae ow, the so-alled `uniform-ow' linearization (desribed inChapter 4 of [2℄) and (ii) solutions of the fully nonlinear free-surfae ow problem.A omparison of the omputed results with the experimental data, obtained from[4℄, is shown in Figure 2.
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Fig. 2. Comparison of the omputed longitudinal wave uts, obtained from thenonlinear method (solid), the `uniform-ow' linearization method (dashed), withexperimental results (markers). Left: y = 0:0755`, right: y = 0:2067`, y = 0orresponds to the plane of symmetry.



6 Mervyn Lewis and Barry Koren4 ConlusionsA Fourier-type analysis shows that for �nite Reynolds number, steady free-surfaewaves annot exist for our redued Navier-Stokes equations, in ombination withthe quasi free-surfae ondition, neither in the ontinuous ase nor in the fullyseond-order aurate disrete ase. In agreement with our omputational �ndings,the Fourier analysis also shows that for the redued Navier-Stokes equations steadywaves an exist when disretizing the quasi free-surfae ondition at �rst-orderauray, under the onstraint that the mesh Reynolds number does not exeed 2.We have applied our iterative free-surfae method to a real 3D ship hydro-dynamis problem. The omputed results reveal that the new formulation of thefree-surfae ow problem yields the orret wave physis and o�ers a fast onver-gene towards the nonlinear solution.Aknowledgement: This work was supported by the Duth Tehnology Foun-dation STW under grant CWI.4883.
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