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wi.nlSummary. A new numeri
al method for water 
ows with free-surfa
e gravitywaves is investigated. The method is �rst analyzed with respe
t to the existen
e ofsteady free-surfa
e waves, and the dispersion properties of these waves. Next, themethod is used to 
ompute the free water surfa
e generated by a standard shiphull.
1 Introdu
tionMost of the 
urrent numeri
al methods for solving steady, vis
ous free-surfa
e 
owsin ship hydrodynami
s employ a time-dependent formulation and integrate until asteady state is rea
hed. This approa
h typi
ally displays the defe
t of high 
ompu-tational 
osts due to persistent transient behaviour of the long gravity waves. Theattenuation of these waves behaves like O(t(1�d)=2) in Rd . To redu
e the 
omputa-tional e�ort of solving free-surfa
e Navier-Stokes 
ow, an eÆ
ient iterative method,employing a stationary formulation of the problem, has been introdu
ed for 2D in[1℄ and has been extended to 3D in [3℄. The method relies on a novel formulationof the free-surfa
e 
ow problem, involving the so-
alled quasi free-surfa
e 
ondition(QFSC): u � r'� Fr�2u � ez = 0; (1a)where u is the velo
ity ve
tor, ' the hydrodynami
 pressure:' = p+ Fr�2z; (1b)Fr the Froude number and ez the unit ve
tor in verti
al dire
tion, positive up-ward. Note that the boundary 
ondition (1a), see [1℄ for a derivation, is nonlinear.So far, this method has not yet been applied to a real 3D ship-hydrodynami
sproblem. In the present paper we will do so. Moreover, a Fourier analysis willbe made of a semi-dis
rete generi
 model problem representing our dis
rete, 3DNavier-Stokes 
ow problem. In the Navier-Stokes equations 
onsidered, streamwisedi�usion, i.e., di�usion in x-dire
tion, is negle
ted. This simpli�
ation turns out tohave far-rea
hing 
onsequen
es for the well-posedness of the 
ontinuous and semi-dis
rete initial boundary-value problem.
2 Fourier analysis of semi-dis
rete problemAs mentioned above, the aim is to 
ompute the 
omplete stationary 
ow �eld, i.e.,the shape of the free surfa
e and the underlying vis
ous 
ow �eld, generated by a



2 Mervyn Lewis and Barry Korenship. We start by analyzing the wave pattern by performing a Fourier analysis for a2D, uniform horizontal 
ow in in�nitely deep water. The analysis uses 
lassi
al per-turbation methods, linearization and Fourier te
hniques. We assume perturbationexpansions in powers of �, �� 1, of the formq(x; t; �) = q0 + �q1(x; t) +O(�2); (2a)�(x; t; �) = �0 + ��1(x; t) +O(�2); (2b)where the solution ve
tor is represented by q = (u(x; t); '(x; t))T and where� = �(x; t; �) denotes the water height. The generating solution, denoted byq0 = (U ; �)T and �0, 
onsists of the unperturbed 
ow velo
ity U = (U; 0)T (U =
onstant), the unperturbed hydrodynami
 pressure � = 0 and the unperturbedwater height �0 = 0. Our spatial domain 
 is de�ned as
 = fx 2 R2 : x 2 (��; �); z 2 (�;�1)g: (3)Sin
e we are 
onsidering the 
ow in in�nitely deep water, in z-dire
tion the domain
 is only bounded by the free surfa
e. We assume thatlimz#�1 q1(x; t) = 0: (4a)Further, we take q(��; z) = q(�; z); (4b)i.e., periodi
ity of the solution in x-dire
tion. To study the 
ombined e�e
t of thedi�erent trun
ation errors on the numeri
al approximation of the free-surfa
e 
ow,we 
onsider the system of modi�ed equations resulting from a semi-dis
retization ofthe redu
ed Navier-Stokes equations in R2 , on a uniform Cartesian grid with meshwidth h. This system reads, negle
ting the O(h4) terms,ut + Uux + 'x � Re�1uzz = U h23 uxxx + h312'xxxx +Re�1 h212uzzzz ; (5a)wt + Uwx + 'z � Re�1wzz = U h23 wxxx + h312'zzzz + Re�1 h212wzzzz ; (5b)ux + wz = h33 uxxx + h312wzzzz : (5
)2.1 Se
ond-order a

urate upwind dis
retization of QFSCOn the free-surfa
e boundary z = �0, the modi�ed quasi-free surfa
e 
onditionresulting from an O(h2) upwind-biased spatial dis
retization is imposed, i.e.,'t + U'x � Fr�2w = U h23 'xxx +O(h3) (6)is imposed. To 
onstru
t a Fourier representation of the solution q1(x; t), 
onsiderthe following isolated mode:q1(x; t) = q̂(k; s; !)eikx+sz�i!t; (7)where k; s 2 R are the wave numbers in x- and z-dire
tion, respe
tively, and where! 2 R is the radial frequen
y. Substitution of (7) into (5), negle
ting the higherthan O(h2) terms, yields



EÆ
ient Numeri
al Method for 3D Vis
ous Free-Surfa
e Flows 3L̂h(k; s; !)q̂eikx+sz�i!t = 0; (8a)
L̂h(k; s; !) = 0�Ĥh(k; s; !) 0 Ĝx;h0 Ĥh(k; s; !) Ĝz;hD̂x;h D̂z;h 0

1A ; (8b)with Ĥh(k; s; !) = �i! + Uik�1 + h2k23 �� Re�1s2�1 + h2s212 � (8
)the semi-dis
rete 
onve
tion-di�usion operator, and with�Ĝx;hĜz;h� = �iks� ; �D̂x;hD̂z;h� =  ik �1 + h2k23 �s ! (8d)the dis
rete pressure gradient operator and divergen
e operator, respe
tively. Anontrivial solution of (8a) exists only ifdet(L̂h) = 0; (9)whi
h results in s = k�1 + h2k26 � : (10)Here we have used the fa
t that for z # �1 the solution perturbations are zero.So, the 
orresponding solution of the system of modi�ed equations is
q1(x; t) = 0� Ĝx;hĜz;h�Ĥh(k; s(k); !)

1A eikx+k�1+h2k26 �z�i!t: (11)
The dispersion relation for the modi�ed problem follows by substitution of thissolution into (6) and solving for !. The roots !1;2 
an be 
al
ulated expli
itly,giving !1;2 = U~k � 12p4Fr�2s� Re�2~s4 + i12Re�1~s2; (12a)~k � k�1 + h2k23 � ; ~s2 � s2�1 + h2s212 � : (12b)Note that the presen
e in (12a) of the positive imaginary term iRe�1~s2 gives rise toexponentially growing solutions. Hen
e, here steady free-surfa
e waves 
annot existfor �nite Reynolds number. It 
an be shown that this is not due to the dis
retiza-tion but due to the 
ontinuous formulation of the free-surfa
e 
ow problem. Thissuggests that this formulation of the free-surfa
e 
ow problem is formally ill-posed.However, the measure of ill-posedness is small for large Re.In the invis
id limit a stationary wave is found. For Re " 1 and h # 0, !1;2 = 0in (12a) yields U2k�1 + h2k22 � = Fr�2: (13)This relation implies that for �xed U and Fr, k de
reases with in
reasing h. I.e., a
oarser mesh results in a larger length of the free-surfa
e wave. Solving the previousexpression for k, assuming a solution of the form k = (UFr)�2(1+ �); �� 1, yields,negle
ting higher-order terms of �,



4 Mervyn Lewis and Barry Korenk = 1(UFr)2  1� 12h2(UFr)4! : (14)We investigate the 
orre
tness of (14) for the numeri
al results depi
ted in Figure1. Here we have applied three grids with in x-dire
tion the mesh sizes h2 , h, and 2h.
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Fig. 1. Wave elevation in some plane y = 
onstant for a 3D test 
ase from Chapter2 of [2℄, with U = 1 and Fr = 0:6.
For U = 1, Fr = 0:6 and through the wavelength relation k = 2�� , a

ording to (14)it should then hold: �h2 = 2:27, �h = 2:31, �2h = 2:48, with �h=0 = 2:26. Detailedobservation of the results shown in Figure 1 shows that the above, analyti
allyfound wavelengths are quite a

urate, thus proving that the Fourier analysis is notonly of qualitative value but even of quantitative value.2.2 First-order a

urate upwind dis
retization of QFSCIn this se
tion we analyze the e�e
t of an O(h)-upwind dis
retization of the quasifree-surfa
e 
ondition. The modi�ed equation belonging to the O(h)-upwind dis-
retization is 't + U'x � Fr�2w = U h2'xx +O(h2): (15)Applying the Fourier transform to the previous expression and substitution of thesolution (11) into the Fourier-transformed quasi free-surfa
e 
ondition (15) yieldsagain a dispersion relation. The solution of this quadrati
 equation for !, negle
tingthe O(h2) term, results in the following roots

!1;2 = 2Uk + i(Re�1s2 � h2Uk2)�q4Fr�2s� (Re�1s2 + h2Uk2)22 : (16)Note that now, as real part of the solution, we have (at least) e 12 (Re�1�h2 U)k2t,where we have again negle
ted the O(h2) terms. Whereas for both the exa
t equa-tions and the O(h2) modi�ed equations, the time behaviour is always exponentially
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ous Free-Surfa
e Flows 5growing, with the O(h) upwind dis
retization of the QFSC, it 
an be exponentiallyde
reasing, i.e., it 
an lead to a steady wave. From (16), it appears that a steadywave is obtained if UReh > 2: (17)Considering the 
ase U = 1, ` = 1, where ` is the referen
e length, this meansthat for mesh Reynolds numbers Reh > 2 we may obtain steady waves due to thenumeri
al di�usion introdu
ed by the O(h) upwind dis
retization of the pressurederivative in the QFSC. In our pra
ti
al 
omputations, with h�Re� 12 , this 
onditionis easily satis�ed.
3 Numeri
al resultsThe free-surfa
e algorithm is now applied to a standard test 
ase originating fromship hydrodynami
s: the 
omputation of the 
omplete 
ow �eld generated by aSeries 60 hull at Fr = 0:316 and Re = 106.The 
omputational domain for this test 
ase 
ontains 353� 69� 45 grid pointsand for the initial �FS we take z = 0. Here, in the solution pro
ess, (1a) is treatedusing Newton's method and r' is dis
retized employing the O(h)-upwind s
heme.The solution method 
orresponds to the modi�ed algorithm as des
ribed in Chapter2 of [2℄. Two types of solutions are 
omputed: (i) solutions belonging to a lineariza-tion of the free-surfa
e 
ow, the so-
alled `uniform-
ow' linearization (des
ribed inChapter 4 of [2℄) and (ii) solutions of the fully nonlinear free-surfa
e 
ow problem.A 
omparison of the 
omputed results with the experimental data, obtained from[4℄, is shown in Figure 2.
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Fig. 2. Comparison of the 
omputed longitudinal wave 
uts, obtained from thenonlinear method (solid), the `uniform-
ow' linearization method (dashed), withexperimental results (markers). Left: y = 0:0755`, right: y = 0:2067`, y = 0
orresponds to the plane of symmetry.



6 Mervyn Lewis and Barry Koren4 Con
lusionsA Fourier-type analysis shows that for �nite Reynolds number, steady free-surfa
ewaves 
annot exist for our redu
ed Navier-Stokes equations, in 
ombination withthe quasi free-surfa
e 
ondition, neither in the 
ontinuous 
ase nor in the fullyse
ond-order a

urate dis
rete 
ase. In agreement with our 
omputational �ndings,the Fourier analysis also shows that for the redu
ed Navier-Stokes equations steadywaves 
an exist when dis
retizing the quasi free-surfa
e 
ondition at �rst-ordera

ura
y, under the 
onstraint that the mesh Reynolds number does not ex
eed 2.We have applied our iterative free-surfa
e method to a real 3D ship hydro-dynami
s problem. The 
omputed results reveal that the new formulation of thefree-surfa
e 
ow problem yields the 
orre
t wave physi
s and o�ers a fast 
onver-gen
e towards the nonlinear solution.A
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