An Efficient Numerical Method for
3D Viscous Ship Hydrodynamics with
Free-Surface Gravity Waves

Mervyn Lewis and Barry Koren

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
[Mervyn.Lewis,Barry.Koren] @cwi.nl

Summary. A new numerical method for water flows with free-surface gravity
waves is investigated. The method is first analyzed with respect to the existence of
steady free-surface waves, and the dispersion properties of these waves. Next, the
method is used to compute the free water surface generated by a standard ship
hull.

1 Introduction

Most of the current numerical methods for solving steady, viscous free-surface flows
in ship hydrodynamics employ a time-dependent formulation and integrate until a
steady state is reached. This approach typically displays the defect of high compu-
tational costs due to persistent transient behaviour of the long gravity waves. The
attenuation of these waves behaves like O(t(lfd)m) in R?. To reduce the computa-
tional effort of solving free-surface Navier-Stokes flow, an efficient iterative method,
employing a stationary formulation of the problem, has been introduced for 2D in
[1] and has been extended to 3D in [3]. The method relies on a novel formulation
of the free-surface flow problem, involving the so-called quasi free-surface condition
(QFSC):

u-Vo—Fr u-e, =0, (1a)
where u is the velocity vector, ¢ the hydrodynamic pressure:
p=p+Fr 7z (1b)

Fr the Froude number and e, the unit vector in vertical direction, positive up-
ward. Note that the boundary condition (1a), see [1] for a derivation, is nonlinear.
So far, this method has not yet been applied to a real 3D ship-hydrodynamics
problem. In the present paper we will do so. Moreover, a Fourier analysis will
be made of a semi-discrete generic model problem representing our discrete, 3D
Navier-Stokes flow problem. In the Navier-Stokes equations considered, streamwise
diffusion, i.e., diffusion in z-direction, is neglected. This simplification turns out to
have far-reaching consequences for the well-posedness of the continuous and semi-
discrete initial boundary-value problem.

2 Fourier analysis of semi-discrete problem

As mentioned above, the aim is to compute the complete stationary flow field, i.e.,
the shape of the free surface and the underlying viscous flow field, generated by a
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ship. We start by analyzing the wave pattern by performing a Fourier analysis for a
2D, uniform horizontal flow in infinitely deep water. The analysis uses classical per-
turbation methods, linearization and Fourier techniques. We assume perturbation
expansions in powers of €, ¢ < 1, of the form

q(@,t;€) = qo + eq(z, t) + O(€”), (2a)
n(z,t;€) = 1o + en(z, 1) + O(), (2b)
where the solution vector is represented by ¢ = (u(z,t),¢(x,t))T and where

n = n(z,t;e) denotes the water height. The generating solution, denoted by
qo = (U, )T and 1o, consists of the unperturbed flow velocity U = (U,0)T (U =
constant), the unperturbed hydrodynamic pressure & = 0 and the unperturbed
water height o = 0. Our spatial domain (2 is defined as

R={xecR:z¢c(—m,7),z€ (n,—)} (3)

Since we are considering the flow in infinitely deep water, in z-direction the domain
2 is only bounded by the free surface. We assume that

ﬁim qi(z,t) = 0. (4a)
Further, we take
q(fﬂ-v Z) = q(ﬂ-v Z)v (4b)

i.e., periodicity of the solution in z-direction. To study the combined effect of the
different truncation errors on the numerical approximation of the free-surface flow,
we consider the system of modified equations resulting from a semi-discretization of
the reduced Navier-Stokes equations in R?, on a uniform Cartesian grid with mesh
width A. This system reads, neglecting the O(h*) terms,

1 h? h® _1h?
ut + Uug + P — Re "u,, = U?uza:z + Eﬂpxzxz + Re Euzzz‘h (53)
_ h? h? _1h?
1 _ w w 1 w
w + Uwg + Pz Re  w,, =U 3 Wege + 1290zzzz + Re 12wzzz27 (5b)
h3 h3
U + W, = ?uzzz + szzzz~ (5C)

2.1 Second-order accurate upwind discretization of QFSC

On the free-surface boundary z = no, the modified quasi-free surface condition
resulting from an O(h?) upwind-biased spatial discretization is imposed, i.e.,

_ n’

is imposed. To construct a Fourier representation of the solution q1(x,t), consider
the following isolated mode:

a1(w, 1) = q(k, s,w)e™ =T, (7)

where k,s € R are the wave numbers in z- and z-direction, respectively, and where
w € R is the radial frequency. Substitution of (7) into (5), neglecting the higher
than O(h?) terms, yields
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Ly (k, s,w)&e"k””“”*"‘”t =0, (8)
. Hy(k,s,0) 0 C}Yz,h
Ly(k,s,w) = 0 Hu(k,s,w) Ga | (8b)
Dz ,n D.n 0
with - B
ﬁh(k,s,w) = —jw+ Uik <1 + h3k > _Re lg? <1 + hlg ) (80)

the semi-discrete convection-diffusion operator, and with

~ . ~ . h2k2
E)-() G)-(0)
Gz,h B} Dz,h S
the discrete pressure gradient operator and divergence operator, respectively. A

nontrivial solution of (8a) exists only if

det(Ly) =0, (9)

ST )

Here we have used the fact that for z | —oco the solution perturbations are zero.
So, the corresponding solution of the system of modified equations is

which results in

Pt ikz+k 1-;-’12’cz z2—iw
qu(z,t) = Gan e (+2%2) g (11)

The dispersion relation for the modified problem follows by substitution of this
solution into (6) and solving for w. The roots wi2 can be calculated explicitly,

giving
-1 1, _
wie =Uk+ E\/4F‘r23 — Re 25* + iRe 5%, (12a)

21,2 2.2
kzk<1+hk>, 52552<1+h1;>. (12b)

Note that the presence in (12a) of the positive imaginary term iRe™'5? gives rise to
exponentially growing solutions. Hence, here steady free-surface waves cannot exist
for finite Reynolds number. It can be shown that this is not due to the discretiza-
tion but due to the continuous formulation of the free-surface flow problem. This
suggests that this formulation of the free-surface flow problem is formally ill-posed.
However, the measure of ill-posedness is small for large Re.

In the inviscid limit a stationary wave is found. For Re T co and h | 0, w12 =0
in (12a) yields

21,2
Uk (1 + hzk > =F 2 (13)

This relation implies that for fixed U and Fr, k decreases with increasing h. L.e., a
coarser mesh results in a larger length of the free-surface wave. Solving the previous
expression for k, assuming a solution of the form k = (UFr) " ?(1+¢), € < 1, yields,
neglecting higher-order terms of ¢,
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We investigate the correctness of (14) for the numerical results depicted in Figure
1. Here we have applied three grids with in z-direction the mesh sizes %, h, and 2h.
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Fig. 1. Wave elevation in some plane y = constant for a 3D test case from Chapter
2 of [2], with U =1 and Fr = 0.6.

For U =1, Fr = 0.6 and through the wavelength relation k£ = 27”, according to (14)
it should then hold: A\n = 2.27, A\p, = 2.31, A2p = 2.48, with A\p—¢ = 2.26. Detailed
observation of the resillts shown in Figure 1 shows that the above, analytically
found wavelengths are quite accurate, thus proving that the Fourier analysis is not
only of qualitative value but even of quantitative value.

2.2 First-order accurate upwind discretization of QFSC

In this section we analyze the effect of an O(h)-upwind discretization of the quasi
free-surface condition. The modified equation belonging to the O(h)-upwind dis-
cretization is

ot +Ups —Fr_Zw:Ugsam+(9(h2). (15)

Applying the Fourier transform to the previous expression and substitution of the
solution (11) into the Fourier-transformed quasi free-surface condition (15) yields
again a dispersion relation. The solution of this quadratic equation for w, neglecting
the O(h?) term, results in the following roots

2Uk +i(Re 1s® — BUK?) & /4Fr 25 — (Re 152 + LUK?)?
' .

(16)

wi,2 =
Note that now, as real part of the solution, we have (at least) e%(Re_lng)kzt,
where we have again neglected the O (h?) terms. Whereas for both the exact equa-
tions and the O(h2) modified equations, the time behaviour is always exponentially
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growing, with the O(h) upwind discretization of the QFSC, it can be exponentially
decreasing, i.e., it can lead to a steady wave. From (16), it appears that a steady
wave is obtained if

UReh > 2. (17)

Considering the case U = 1, £ = 1, where /¢ is the reference length, this means
that for mesh Reynolds numbers Reh > 2 we may obtain steady waves due to the
numerical diffusion introduced by the O(h) upwind discretization of the pressure
derivative in the QFSC. In our practical computations, with h+~Re™ 3 , this condition
is easily satisfied.

3 Numerical results

The free-surface algorithm is now applied to a standard test case originating from
ship hydrodynamics: the computation of the complete flow field generated by a
Series 60 hull at Fr = 0.316 and Re = 10°.

The computational domain for this test case contains 353 x 69 x 45 grid points
and for the initial I'rs we take z = 0. Here, in the solution process, (1a) is treated
using Newton’s method and Ve is discretized employing the O(h)-upwind scheme.
The solution method corresponds to the modified algorithm as described in Chapter
2 of [2]. Two types of solutions are computed: () solutions belonging to a lineariza-
tion of the free-surface flow, the so-called ‘uniform-flow’ linearization (described in
Chapter 4 of [2]) and (i¢) solutions of the fully nonlinear free-surface flow problem.
A comparison of the computed results with the experimental data, obtained from
[4], is shown in Figure 2.

Fig. 2. Comparison of the computed longitudinal wave cuts, obtained from the
nonlinear method (solid), the ‘uniform-flow’ linearization method (dashed), with
experimental results (markers). Left: y = 0.0755¢, right: y = 0.2067¢, y = 0
corresponds to the plane of symmetry.
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4 Conclusions

A Fourier-type analysis shows that for finite Reynolds number, steady free-surface
waves cannot exist for our reduced Navier-Stokes equations, in combination with
the quasi free-surface condition, neither in the continuous case nor in the fully
second-order accurate discrete case. In agreement with our computational findings,
the Fourier analysis also shows that for the reduced Navier-Stokes equations steady
waves can exist when discretizing the quasi free-surface condition at first-order
accuracy, under the constraint that the mesh Reynolds number does not exceed 2.

We have applied our iterative free-surface method to a real 3D ship hydro-
dynamics problem. The computed results reveal that the new formulation of the
free-surface flow problem yields the correct wave physics and offers a fast conver-
gence towards the nonlinear solution.
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